Hydrology is an important environmental factor for the evolution of wetland landscape patterns. In the past 20 years, Poyang Lake, the largest freshwater lake in China, has experienced significant inundation shrinkage and water level decrease, posing a significant threat to the local vegetation community. To explore the potential relationship between aquatic vegetation and hydrological processes in the recent hydrological situation, in this study, the landscape patterns of aquatic vegetation communities in Poyang Lake were studied using time-series Landsat remote sensing images and a support vector machine classifier. The stepwise regression analysis method was adopted to analyze the relationship between the vegetation area and hydrological factors. The results indicated that the area of submerged and emergent vegetation in the entire lake decreased significantly from 2001 to 2017, whereas the area of moist vegetation showed a remarkably increasing trend. The average distribution elevation of the submerged vegetation increased by 0.06 m per year. The corresponding landscape patterns showed that the degree of fragmentation of aquatic vegetation communities in Poyang Lake increased. Several hydrological factors were selected to quantify the potential impact of water level fluctuations. The correlation analysis results indicated that hydrological conditions during the rising-and high-water periods may be the key factors affecting the area of aquatic vegetation. This study systematically investigated the evolution of vegetation communities in Poyang Lake wetlands over the past two decades, which contributes to the protection and …