A numerical analysis model based on two-dimensional shallow water differential equations is presented for straight open-channel flow with partial vegetation across the channel. Both the drag force acting on vegetation and the momentum exchange between the vegetation and non-vegetation zones are considered. The depth-averaged streamwise velocity is solved by the singular perturbation method, while the Reynolds stress is calculated based on the results of the streamwise velocity. Comparisons with the experimental data indicate that the accuracy of prediction is significantly improved by introducing a term for the secondary current in the model. A sensitivity analysis shows that a sound choice of the secondary current intensity coefficient is important for an accurate prediction of the depth-averaged streamwise velocity near the vegetation and non-vegetation interfaces, and the drag force coefficient is crucial for predictions in the vegetation zone.