武汉大学 2010–2011 学年第一学期期末考试

数学与统计学院 2008 级 信息与计算科学、数学与应用数学等专业

《离散数学》试题 (A 卷)

注意事项:
1. 本试卷共 21 道试题, 满分 100 分, 考试时间 120 分钟.
2. 请将答案全部写在武汉大学试卷纸上, 写在其他位置无效.

一、选择题(本题满分 10 分, 每小题 2 分)
1. 下列命题公式中为永假的是
 (A) \(P \to (P \lor Q \lor R) \) (B) \((P \to Q \land (Q \to R)) \to (P \to R) \)
 (C) \((P \lor \neg P) \to ((Q \land \neg R) \land \neg Q) \) (D) \(\neg P \to Q \to (Q \to \neg P) \)
2. 设 \(A \) 是以空集 \(\emptyset \) 作为唯一元素的集合, 集合 \(B = \mathcal{P}(\mathcal{P}(A)) \), 则下述表达错误的是
 (A) \(\emptyset \in B \) (B) \(\emptyset \subseteq B \) (C) \(\emptyset, \{\emptyset\} \subseteq B \) (D) \(\emptyset, \{\emptyset\} \subseteq B \)
3. 一个 6 阶群的任何子群一定不是
 (A) 2 阶的 (B) 3 阶的 (C) 4 阶的 (D) 6 阶的
4. 一个无向图有 4 个节点, 其中 3 个的度数为 2, 3, 3, 则第 4 个节点的度数不可能是
 (A) 0 (B) 1 (C) 2 (D) 4
5. 下列各图中, 不是平面图的是

 (A) ![图1] (B) ![图2] (C) ![图3] (D) ![图4]

二、填空题(本题满分 10 分, 每小题 2 分)
6. 只使用联结词 \(\neg \) 和 \(\to \), 将命题公式 \(P \land Q \) 转化为一个等价形式: 为
7. 设 \(n, m \) 为正整数. 若集合 \(A \) 恰有 \(n \) 个元素, 则在 \(A \) 上共有 ______ 个不同的 \(m \) 元序偶, 从而在 \(A \) 上能有 ______ 个不同的 \(m \) 元关系.
8. 设简单无向图 \(G \) 有 21 条边, 3 个 4 度结点, 其余均为 3 度结点, 则图 \(G \) 有 ______ 个结点.
9. 设图 \(G = (V, E) \) 的结点数 \(|V| = n \), 边数 \(|E| = m \). 则图 \(G \) 是树的充分必要条件为: \(G \) 是连通的且 \(n = \) ________.
10. 简单连通平面图 \(G \) 有 5 个结点, 7 条边, 则 \(G \) 的面数为 ________.

三、解答题(本题满分 80 分)
11. (6 分) 使用等价公式证明: \(P \to (Q \to P) \iff \neg P \to (P \to \neg Q) \).
12. (6 分) 设 $A = \{x: x$ 为正数且 x 为 54 的因子$\}$, $R \subseteq A \times A$, 且任意 $x, y \in A$, xRy 当且仅当 x 整除 y.

（1）画出偏序集 (A, R) 的哈斯图；

（2）取 A 的子集 $B = \{2, 3, 9\}$, 求出 B 的最小元, 极大元和上确界。

13. (12 分) 设 $A = \{a, b, c, d\}$, A 上的二元关系 R_1 和 R_2 定义如下:

$$R_1 = \{(a, b), (b, c), (c, d), (d, a)\},$$

$$R_2 = I_A \cup \{(a, b), (b, a), (c, d), (d, c)\}.$$

其中 I_A 是 A 上的恒等关系。

（1）分别指出 R_1 和 R_2 所具有的性质(是具有自反性, 反自反性, 对称性, 反对称性和传递性)。

（2）求出 R_1^2, R_2^2, $R_1 \circ R_2$, R_1^+ 和 R_1^2 (传递闭包)。

14. (8 分) 给出下述的推理证明:

$$(A \to B) \land (C \to D), (B \to E) \land (D \to F), \neg (E \land F), A \to C \Rightarrow \neg A.$$

15. (8 分) 设 \mathbb{N} 是自然数集, 定义 \mathbb{N} 上的二元关系 $R = \{(x, y) | x, y \in \mathbb{N} \land x + y$ 是偶数$\}$。

（1）证明 R 是一个等价关系；

（2）求商集 \mathbb{N}/R。

16. (8 分) 某城市拟在六个区之间架设电话网, 其网点间的距离由下面的矩阵给出. 数字 0 表示两个小镇之间不能架设直接的线路. 试设计架设线路的最优方案使得总距离最小(请问给出图并计算出线路长度)。

$$
\begin{pmatrix}
0 & 1 & 0 & 2 & 9 & 0 \\
1 & 0 & 4 & 0 & 8 & 5 \\
0 & 4 & 0 & 3 & 0 & 10 \\
2 & 0 & 3 & 0 & 7 & 6 \\
9 & 8 & 0 & 7 & 0 & 0 \\
0 & 5 & 10 & 6 & 0 & 0
\end{pmatrix}
$$

17. (8 分) 甲乙丙丁四人参加考试后, 有人问他们, 谁的成绩最好, 甲说“不是我”, 乙说“是丁”, 丙说“是乙”, 丁说“不是我”. 四人的回答只有一人符合实际. 问成绩最好的是哪一个人？

18. (6 分) 试证明在完全 2 叉树中有如下关系: $l = (v + 1)/2$, 其中 v 是结点的数目, l 是树叶的数目。

19. (6 分) 设 $G = \{1, -1, i, -i\}$, 其中 $i \times i = -1$, 运算 \times 是普通乘法. 证明 (G, \times) 是循环群。

20. (6 分) 画出结点数 $v = 6$ 的所有不同构的无向树。

21. (6 分) 画三个图, 使之分别满足下列条件:

（1）只存在欧拉回路, 而不存在哈密尔顿回路。

（2）存在哈密尔顿回路, 但不存在欧拉回路。

（3）既存在欧拉回路又存在哈密尔顿回路。
参考答案，卷 (A)

1. C
2. D
3. C
4. B
5. A
6. \(\neg (P \rightarrow \neg Q)\)
7. \(n^m, 2^{n^m}\)
8. 10
9. \(m + 1\)
10. 4
11. \(P \rightarrow (Q \rightarrow P) \iff P \rightarrow (\neg P \rightarrow \neg Q) \iff (P \rightarrow \neg P) \rightarrow \neg Q \iff (\neg P \rightarrow P) \rightarrow \neg Q \iff \neg P \rightarrow (P \rightarrow \neg Q)\).
12. (1) \(\langle A, R \rangle\) 的哈斯图:

(2) \(B\) 中无最小元; 极大元为 2, 9; 上确界为 18.

13. (1) \(R_1\) 和 \(R_2\) 的关系矩阵分别为

\[
M_{R_1} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}, \quad M_{R_2} = \begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{pmatrix}.
\]
<table>
<thead>
<tr>
<th></th>
<th>自反性</th>
<th>反自反性</th>
<th>对称性</th>
<th>反对称性</th>
<th>传递性</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
</tr>
<tr>
<td>R_2</td>
<td>是</td>
<td>否</td>
<td>是</td>
<td>否</td>
<td>是</td>
</tr>
</tbody>
</table>

(2) 由

$$ M_{R_1}^2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \circ \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, $$

知 $R_1^2 = \{ \langle a, c \rangle, \langle b, d \rangle, \langle c, a \rangle, \langle d, b \rangle \}$.

同理, $R_2^2 = R_2, R_1 \circ R_2 = \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, c \rangle, \langle b, d \rangle, \langle c, c \rangle, \langle c, d \rangle, \langle d, a \rangle, \langle d, b \rangle \}$.

$$ M_{R_1}^+ = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}, $$

R_2 已经满足传递性，其传递闭包就是自己。即 $R_2^+ = R_2$.

14. 列表证明如下:

(1) $\neg(E \land F)$ P
(2) $\neg E \lor \neg F$ T(1) E
(3) $(A \rightarrow B) \land (C \rightarrow D)$ P
(4) $A \rightarrow B$ T(3) I
(5) $(B \rightarrow E) \land (D \rightarrow F)$ P
(6) $B \rightarrow E$ T(5) I
(7) $A \rightarrow E$ T(4),(6) I
(8) $\neg E \rightarrow \neg A$ T(7) E
(9) $A \rightarrow C$ P
(10) $C \rightarrow D$ T(3) I
(11) $D \rightarrow F$ T(5) I
(12) $A \rightarrow F$ T(9),(10),(11) I
(13) $\neg F \rightarrow \neg A$ T(12) E
(14) $\neg A$ T(2),(8),(13) I

15. (1) 验证关系 R 满足自反性、对称性、传递性即可。
(2) $\mathbb{N}/R = \{ \{1, 3, 5, \ldots \}, \{0, 2, 4, 6, \ldots \} \}$.

第 2 頁
16. (1) 图形可以表达如下(形式不唯一):

(2) 依次选择 \(\omega_{ab} = 1, \omega_{ad} = 2, \omega_{dc} = 3, \omega_{bf} = 5, \omega_{de} = 7 \), 得到最小生成树. 其线段长度为 18.

17. 列出命题公式, 在四种赋值 1000, 0100, 0010, 0001 中, 只有第一个使得命题为真. 即成绩最好的是甲.

18. 完全 \(m \) 叉树. 其树叶数为 \(l \), 分枝点数为 \(i \), 则

\[(m - 1)i = l - 1.\]

则对完全 2 叉树, 有 \(i = l - 1 \). 又 \(i = v - l \), 得 \(l - 1 = v - l \), 即 \(l = (v + 1)/2 \).

19. \(1 \) 是幺元; \(1, -1 \) 的逆元是自身; \(i, -i \) 互为逆元.

由 \(i^2 = -1, i^3 = -i, i^4 = 1 \), 知 \(i \) 是生成元.

由 \((-i)^2 = -1, (-i)^3 = i, (-i)^4 = 1 \), 知 \(-i\) 也是生成元.

20. 共有 6 种情况:

21. (答案不唯一)